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Shear flow and magnetic field effects on 
smectic C, C*, C, and C z  liquid crystals 

by S. P. A. GILL and F. M. LESLIE* 
Department of Mathematics, University of Strathclyde, Livingstone Tower, 

Richmond Street, Glasgow G1 lXH, Scotland 

The continuum equations of Leslie et al. [l] for smectic C, and the extension of 
this theory for chiral smectic C* [2], are applied to problems involving simple 
planar layer configurations which accommodate uniform layer thickness con- 
straints. The chiral smectic C& and non-chiral smectic C, [3] are considered as either 
biaxial smectic A phases or antiferroelectric smectic C phases and are therefore 
included as interesting degenerate cases of the smectic C* and C phases, 
respectively. The effects of static and time dependent magnetic fields on these 
materials are compared with related deformations occurring in nematics [S]  and 
cholesterics [S, 61. Their reaction to applied shears is also investigated yielding 
examples of flow alignment, induced secondary flows and unwinding of the chiral 
helix and testing the validity of enforcing a constant layer thickness. 

1. Introduction 
Recently Leslie et al. [ 11 have proposed a constrained theory for smectic C liquid 

crystals that may be useful for the analysis of some of the effects in these materials. The 
theory is based on two simplifying assumptions that clearly restrict its range of 
applicability. These are that the layers although deformed remain of constant 
thickness, and also that the angle of tilt of the alignment with respect to the layer 
normal remains fixed, the former appearing reasonable in many situations, and the 
latter provided pretransitional and thermal effects are negligible. 

Such theory results in a quadratic elastic energy that contains eleven terms for 
chiral materials [2] and nine for non-chiral smectics [7]. Here, however, our aim is to 
examine preliminary predictions based on the corresponding dynamic theory. This 
theory contains twenty dissipative terms in the stress tensor, but nonetheless some 
progress is possible in discussing the simpler arrangements in shear flow. 

The essential difference between the nematic case and the smectic one is the 
restriction imposed by the layered structure of the smectic. Any shear must be applied 
parallel to the layers in order to retain any possibility of preserving them. This is a 
necessary condition but it is not a completely sufficient one. If the anisotropic axes of the 
smectic molecules are not confined to the plane of shear it is clearly apparent that 
moving these strata over one another will induce a secondary velocity perpendicular to 
the plane of shear, If this transverse velocity acts against a boundary an internal 
pressure will be generated which must inevitably lead to deformation of the layered 
structure. In this paper shear flow of two differently orientated samples, a planar 
homeotropic and a bookshelf alignment, are examined to illustrate some of these 
effects. 

* Author for correspondence. 

0267-8292/93 $1000 0 1993 Taylor & Francis Ltd. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
1
:
1
0
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



1906 S. P. A. Gill and F. M. Leslie 

2. A continuum theory for smectics C, C*, CII and CG 
All the smectic phases under consideration are layered, blaxial phases. Smectic C 

consists of rod-like uniaxial molecules which align at a constant angle of tilt to the 
layers in an isothermal system. This is a well-documented liquid crystal phase, but 
probably not so well-known is the smectic C, phase recently described by Brand and 
Pleiner [3]. The M subscript acknowledges McMillan who first predicted their 
existence about 20 years ago although they have only recently been discovered in 
polymeric liquid crystals. They consist of disc-like biaxial molecules where one axis 
coincides with the layer normal, which we could describe as a biaxial smectic A phase. It 
is of interest to note that an antiferroelectric smectic C phase, where the tilted molecules 
alternate in direction around the layer normal by 180" as we cross each layer, also 
possesses a similar symmetry to that of smectic C, and so can be modelled by the same 
continuum theory. 

For all these phases the * superscript denotes the chiral version of the phase in 
which the molecules rotate with a constant pitch around the layer normal as we cross 
the layers. This helical structure leads to the presence of a permanent polarization in 
smectic C* which appears in the plane of the layers perpendicular to the molecules. Any 
externally applied electric field interacts with this permanent polarization leading to 
the fast switching mechanism these ferroelectric phases exhibit. However the additional 
symmetry of smectic C z  means that no such permanent polarization is evident in this 
chiral phase. Therefore, as the ferroelectric behaviour of smectic C* will be markedly 
different from that of smectic CG in an electric field, we confine our investigations to 
their responses in magnetic fields. 

We start with the continuum model for smectic C derived by Leslie et al. [l] which 
describes the smectic structure by a pair of orthogonal unit vectors a and c. The vector 
a is the density wave vector which also coincides with the layer normal due to the 
assumption that the layers have a constant thickness. The second vector c is 
perpendicular to a and describes the direction of tilt of the alignment with respect to the 
layer normal. Geometrical considerations lead to the assumption that any constitutive 
relations in the model should remain invariant under the changes of sign 

a+-a and c+-c. (2.1) 

This simultaneous transformation allows terms that are even and odd in multiples of a 
and c. However the additional symmetry of the smectic C, phase implies that we can 
have an independent change of sign 

a + - a o r  c+-c. (2.2) 

In this case only terms involving even multiples of a and c can exist. Therefore the 
smectic C, and CG phases can be modelled using a degenerate case of the smectic C and 
C* models, respectively. Removing the terms odd in a and c from the constitutive 
relations for the elastic energy function and the viscous stress tensor is simply achieved 
by letting 

K ' , = K ? = ~ = K ~ = O  for all i (2.3) 
in the smectic C continuum theory. The helical phases are modelled by the addition of a 
chiral term into the elastic energy function which was derived by Carlsson et al. [2]. 
They also predicted a second chiral term, but this is not found to be of importance in the 
situations investigated here and as there is some doubt about its existence, it is omitted. 
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4nK; 
- [F &ijkajckci,pap 

and viscous stress tensor 

+ 1,(CiCj + C,€J + A,C,A,(U,Cj + UjCi )  

21(D'$i - &aj) + L2(D;ci -Dfcj) + A3c,D;(aicj - ajci) c,c*9cM'c' I - [  + A 4 ( A j U ,  - AiUj) + A,(C,€, - CiCj) + A6CpAp(aicj- UjCi )  

tss= 
11 

+z,(Dgci-Dfcj)  +z,(D;ai-Dfaj) + z3apD;(aiCj-ajci) c,c* 

+z4c,DCp(aicj-ajci)+z,(Ajci-Aicj+ Cjai-Ciaj)  I '  

1907 

where the s and ss superscripts denote the symmetric and skew-symmetric parts of the 
tensor and the superscripts on the square brackets indicate for which phases the terms 
inside are relevant. 

3. Shear flow of a planar homeotropic sample 
The smectic liquid crystal is arranged in horizontal layers between two infinite 

parallel plates a distance 2d apart (see Beresnev et al. [ S ]  for a practical method of 
orientating such samples). The lower one is at rest while the upper one is moved with a 
velocity U in a straight line in its own plane. The origin is mid-way between the plates 
with the z axis normal to the plates and the x axis parallel to the direction of motion of 
the upper plate. The alignment is described by the layer normal a which coincides with 
the z axis and the projection of the director in the x-y plane c. 

The layer normal a is assumed to be constant and the velocity v and the c director c 
are assumed to be purely functions of z and are given by 

a= [O, 0 ,1 ] ,  c = [cos d(z),  sin d(z),  01, v = [u(z), v(z), 01, (3.1) 
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1908 S .  P. A. Gill and F. M. Leslie 

where 4 is the angle between c and the x axis, u(z) is the velocity in the shear plane and 
v(z) is the secondary velocity. 

Investigations of the added effect of the chirality of the helical structures of smectics 
C* and C$ reveals that this has no contribution to the governing equations and simply 
adds a chiral term to the elastic energy function. The chiral materials are therefore 
easily described using the non-chiral models with suitably adjusted boundary 
conditions. For this reason the shear flow behaviour of the chiral smectics C* and C$ 
are considered together with their non-chiral counterparts smectics C and C,, 
respectively. 

3.1. Shearflow of smectics C and C* 
3.1.1. The elastic energy function 

The non-chiral contribution to the elastic energy function is due to resistance 
encountered when rotating the director around the layer normal away from its 
minimum energy position. 

~=~K;[~(b.Vxb+c.Vxc)l"=K;(d~) , b = a x c .  (3.1.1) 

The chiral term arises from a similar distortion but plays no part in the governing 
equations 

2 

(3.1.2) 

where q = 2x/P is the wave vector of the pitch P. The discussion of the statics of these 
smectics by Carlsson et al. [9] suggests that K; be positive. 

d 4  w* = K",[+(b* V x b + c . V x c)] = - K5q -, 
d z  

3.1.2. The linear momentum balance 

and adopting the Onsager viscosity relations we have 
In the absence of applied pressure gradients and external body forces and couples, 

(3.1.3) 

q 1 z + y 2  du ( d u  
dz dz 

in the x and y directions, respectively, where the yi are the following combinations of 
viscosity coefficients 

These equations can both be integrated once with respect to z to give 

(3.1.5) 

(3.1.6) 
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Behaviour of smectics C, C*, C, and C$ 1909 

which leads to the appearance of c1 and c2, the shearing forces per unit area in the x and 
y directions, respectively. On rearrangement we have expressions for the velocity 
components u(z) and v(z). 

_- dv c2(q1 + ~ ] ~ c o s ’ ~ ) - c ~ ~ / ~ s i n ~ c o s ~  - 
dz ‘l(‘1 +‘Z) 

3.1.3. The angular momentum balance 
The angular momentum c equations yield 

K ; = + ( T ~ - ~ ~ )  d Z 4  

or, substituting equation (3.1.1) and equations (3.1.7) and (3.1.8) we obtain 

dW - - (75-71) 
-=t - t  =- (cl sin 4 - c2 cos 4) = 0. 
d 4  xy yx 111 

Integrating with respect to 4 gives 
2 w=+K; (g) = -K;---(c1cos4+czsin4)+constant, ‘0 

‘1 

where we have introduced the constant 

(3.1.7) 

(3.1.8) 

(3.1.9) 

(3.1.10) 

(3.1.1 1) 

(3.1.12) 

3.1.4. The viscous dissipation inequality 

coefficients 
The following thermodynamic relation constrains the magnitude of the viscosity 

or, using equations (3.1.5) and (3.1.6) 
du dv 
dz dz c1 -+cC,-~O. (3.1.14) 

To learn some more about the viscosity combinations relevant to this problem, qi, we 
look at the viscosity experiments carried out by Miesowicz [lo] on nematics. Miesowicz 
oriented the sample by applying a strong magnetic field and then measured the 
apparent viscosity 11 for different director geometries where - 

t .. -2 shear stress - 
‘=velocity gradient 2Dij ’ 

(3.1.15) 

When the flow is confined to the plane of shear (i.e. v(z) = 0) and the c director is fixed 
parallel to this flow (i.e. 4=0) then equation (3.1.5) yields 

(3.1.16) 
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1910 S .  P. A. Gill and F. M. Leslie 

and hence, using equations (3.1.14) and (3.1.15), the apparent viscosity for the c director 
aligned parallel to the flow is 

Vpl =(v1+ V 2 ) 2 0 .  (3.1.17) 

Similarly when the c director is fixed perpendicular to the plane of shear (i.e. 4 =in), 
equation (3.1.5) yields 

I du 
txz=v1 -=c1 

dz 
(3.1.1 8) 

and hence, using equations (3.1.14) and (3.1.15) again, the apparent viscosity for the c 
director aligned perpendicuiar to the flow is 

Vpd = V l 2  0. (3.1.19) 

Since results from experiments such as these for smectics are not known at this time it 
seems that our best approximations for the qi can be achieved by looking at the similar 
coefficients derived from tests like these for nematics. Typical values are roughly 
qpl=O-02 p and qpd =@03 p which suggest for purposes of illustration that we should 
take v1  = 31, and v 2  = - qo. 

3.1.5. The Lagrange multipliers, Pi 
The Lagrange multipliers are thought to be couples that are inherent in the layered 

structure of the smectic materials, which resist destabilising forces on the layers that 
occur when an external stimulus is applied, and hence allow the initial static geometry 
to be preserved under such disturbances. 

It is therefore of importance to discover the form that these multiplers take if not 
only to discover whether the fixed parallel layer assumption is feasible but also to 
perhaps shed some light on their behaviour and role. From the angular momentum a 
equations we obtain 

B = c - B l ( Z ) ,  P2(z), 03, (3.1.20) 
where 

(3.1.21) I d B 2  - - du 
dz dz -=tt , ,- tZx+K',  

and 

a(z)=(A, - 1, + A 5  +A6)  cos 4 +-sin dv 4 ) + K; (::)'. - (3.1.22) dz 

Therefore the existence of a finite solution for these multipliers suggests that the planar 
homeotropic arrangement is stable under a finite shear parallel to the layers for any 
surface alignment. 

3.1.6. Scaling analysis 

introduced by Ericksen [ l l ]  
For a more general discussion of this problem we adopt the following scaling first 

Z 
Z=- ii=od, c=Cd2, (3.1.23) d '  
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Behaviour of smectics C, C*, C, and C& 191 1 

where v represents either of the velocity components u or u, and c denotes either of the 
shear forces c1 or c2 .  Substituting equations (3.1.23) into equations (3.1.7) and (3.1.8) we 
obtain 

- 

(3.1.24) 
du - Cl(yll + y12 sin2 4) - C2y12 sin 4 cos 4 

dfi c2(yll + q2 cos’ 4) - c1y12 sin 4 cos 4 
d l -  yll(yl1 + r 2 )  

d2-  yll(yl1 + r 2 )  

- 

and equation (3.1.11) becomes 
2 

ylo - 

yl1 
= r;) = - 2 - (cl cos 4 + C2 sin 4) +constant (3.1.25) 

which gives us a neat summary of the problem. 

3.1.7. Equilibrium analysis 
To investigate the stability of the flow we look at a time dependent director profile 

and a simple newtonian linear velocity profile and assume that no secondary velocity is 
evident at flow alignment. 

a=[O,O, 11, c =  [cos 4(t),sin 4(t),O], v =  [kz,0,0], (3.1.26) 

where k is a positive constant. In this event the angular momentum equations reduce to 

(3.1.27) 21, -+ k(z ,  - zl) sin 4 =0, 

where the dissipation inequality implies that 1, is positive. It follows that the director 
tends towards some fixed alignment angle given by 

4+O if z,>zl and qb+n if ~ 1 > ~ 5 .  (3.1.28) 

Intuitively it seems natural that the c director will align with the flow (4 = 0) rather than 
against it (4=n).  Therefore it seems reasonable to assume that z, is greater than zl. 

d 4  
d t  

3.1.8 The general solution for asymmetric boundary conditions 
In this case a twisted smectic or a chiral smectic is assumed to have a surface 

alignment on the lower plate that is the opposite of that on the upper one. Therefore we 
allow the director profile 4(z)  to be represented by a function that is asymmetric about 
the flow alignment angle 4 = 0 and has the following boundary conditions 

1 4( -1 )=-do ,  U(-l)=O, U(-l)=O, 

4(1)= + cpo, 17(1)= 0, U(l)=O, 
(3.1.29) 

where b0 and r f  are positive constants and strong anchoring is assumed. The director is 
odd in z so 

4( - 5) = - 4(5). (3.1.30) 

Let us introduce the rate of change of 4 at the middle of the sample defined by 

(3.1.31) 
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1912 S. P. A. Gill and F. M. Leslie 

This input variable represents the magnitude of the applied shear and, due to flow 
alignment considerations, must satisfy the constraint 

4; < 40. (3.1.32) 

Substituting equation (3.1.30) into equation (3.1.25) and resolving into its even 
components r$y = - 2 r o  c1 - cos 4 + constant 

and its odd components 
?o - O =  - 2 - c 2  sin4 
?l  

(3.1.3 3) 

(3.1.34) 

the latter of which implies that 

Cz = 0. (3.1.35) 

Upon introduction of equation (3.1.31) into equation (3.1.33) we obtain 

(3.1.36) 

which can be rearranged and integrated with respect to 5 from Z = O  to Z= 1 

I 2  l / Z  d4> (3.1.3 7) 

yielding C, for a certain 4o and 4;. Similarly this gives an expression for the director 
profile 

r:I2 @O 

1 =  { 
0 C 2 ~ o C 1 ( 1 - ~ 0 ~ 4 ) + ~ 1 4 r n l  

(3.1.38) 

From equations (3.1.24) (3.1.35) and (3.1.36) the velocity components are 

and therefore 

The boundary condition zi(1) equal to zero is automatically satisfied, as the integrand is 
an odd function calculated over a symmetrical range. These integrals cannot be 
evaluated analytically but they can all be written in terms of the incomplete elliptical 
integrals of the first and second kind which can be calculated quickly and precisely 
using mathematical packages. 

3.1.9. Numerical results for asymmetric boundary conditions 
For all calculations we take qo equal to unity since it is only a scaling parameter and 

does not affect the form of the output. Initially we consider a cell in which the alignment 
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Behaviour of smectics C,  C*, C ,  and C; 1913 

at the lower surface is parallel but opposite to that on the upper one, i.e. there is a 
complete twist of 27c across the cell. Figure l ( a )  simply illustrates the fact that the 
director profile becomes flatter, and therefore increasingly oriented towards the flow 
alignment angle, as the applied shear is increased. Figure 1 (b) shows that the in-plane 
velocity is fairly linear with only a few small undulations corresponding to the 
interaction with the distortions of the director. Of most interest is the transverse 
velocity component, in figure 1 (c), which is seen to change sign twice across the sample. 
As the applied velocity rises the bulk of the secondary velocity occupies the middle of 
the cell with the areas of fluctuation being increasingly confined to the boundaries. 

The evolution of the system as the shear rate rises is illustrated in figure 2. Figure 
2 (a)  shows that the smectic is relatively easy to deform initially but this process gets 
harder and harder as the majority of the sample becomes oriented at the flow alignment 
angle. The transverse velocity as a proportion of the in-plane velocity, figure 2 (b), is 
seen to tend towards a limit as the applied shear increases. It is also found that the 
shearing force per unit area c1 increases almost linearly with 0. 

Expanding the number of twists in the smectic helix as we cross the cell from one to 
six illustrates the type of behaviour we could expect from shear flow of chiral smectic 
C*. Figure 3(a) shows that for small shear rates the director orients at the flow 
alignment angle quite evenly across the sample. But as the shear rate rises the 
untwisting of the helix becomes confined to a small boundary layer. The strong 
anchoring assumed at the boundary would probably not be evident in these areas of 
high distortion and some relaxation must take place. The in-plane velocity profiles are 
all approximately linear at these large shear rates but examination of the transverse 
velocity profiles, in figure 3 (b), again illustrates that the areas of fluctuation correspond 
to the regions of untwisting. 

3.1.10. Numerical results for symmetric boundary conditions 
The asymmetric surface geometry was investigated because it not only simplified 

the analysis of the problem but it was also readily adapted to illustrate the behaviour of 
chiral and achiral smectics. However, the general case can be numerically modelled in a 
similar way and to demonstrate the effect of different surface alignments we select 

4(-1)= ++o, U(-1)=0, 5(- l )=O,  

+(1)= +40, U ( l ) =  0, G(l)=O 
(3.1.41) 

which define a symmetric director profile. For symmetric boundary conditions 4; is 
always zero so the driving variable must be altered. We choose 4m, the maximum 
distortion of the director from its surface orientation, defined by 

+In = +(O). (3.1.42) 
Unlike the asymmetric case F, is non-zero. In figure 4 the surface orientation is taken to 
be aligned against the flow but slightly out of the plane of shear as the director must be 
perturbed from this unstable equilibrium position (see 9 3.1.7) for non-trivial results. 
Figure 4 (a) illustrates how the director rotates into the plane of shear as the velocity 
now has an odd profile to complement the evenness of the director profile. The in-plane 
velocity component is fairly linear and similar to its asymmetric counterpart shown in 
figure l (b ) .  

In figure 5(a)  it is seen that when the c director is initially pointing against the 
applied shear (solid line) it takes a relatively large velocity for a small initial movement 
of the c director. Above a certain velocity, however, the molecules lie sufficiently out of 
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Behaviour of smectics C ,  C*, C, and C$ 1915 

Figure 2. Illustration of (a) &,, and (b)  V U ,  where Vis the maximum value of fi/(i?), as functions 
for 4o = n (solid line), 4o =$z (dotted line) and +o =in (dashed of the applied velocity 

line). 

the plane of shear to be easily oriented towards the direction of flow. Although Cl 
increases fairly linearly with 27 the shearing force per unit area in the y direction 
exhibits some interesting behaviour. It is shown in figure 5 (b) that the transverse shear 
component is nearly zero when the c director is aligned against the flow but this greatly 
increases when the director profile starts to be distorted. It then decreases as the 
molecules begin to  rotate round to orient with the flow and eventually changes sign and 
becomes linear in 0 when the bulk of the sample has reached flow equilibrium. 

3.2. Shearpow of smectics C, and C;$ 
3.2.1. The governing equations 

For this degenerate case of the previous shear situation we simply put all the 
coefficients of the constitutive terms that contain odd multiples of a and c (see 
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1916 S .  P. A. Gill and F. M. Leslie 

& E l  

(4 
Figure 3. Cross-cell profiles for (a) &z) and (b) i@) for &=6n and &= 1.00 (solid line), 

I$:,=0.035 (dotted line) and I$,=0.02 (dashed line) corresponding to 0% 1.5, 11 and 
700 ( x  lo3). The straight, dotted line represents the undisturbed alignment. 

equation (2.3)) to zero. We find that the governing equation (3.1.24) remains unchanged 
and equation (3.1.25) becomes ey =constant. (3.2.1) 

Due to the absence of any viscous torques in equation (3.2.1) it is obvious that the 
director profile 4(z) will be a linear function of z prescribed by the director surface 
orientations. Therefore no flow alignment can be possible. 

3.2.2. The general solution for asymmetric boundary conditions 

that equation (3.2.1) implies a linear director profile across the cell 
Employing the same boundary conditions as described by equations (3.1.29) we find 

d4.z) = 405 (3.2.2) 
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Figure 4. Cross-cell profiles for (a) $(Z), (b)  6(Z) for 4,, = 3.14 and 4,,, = fn (solid line), 4,,, =in 

(dotted line) and $,,, = 0.01 (dashed line). 

and so, assuming that 4o is non-zero, equations (3.1.24) can be integrated with respect 
to ,i to give 

(3.2.3) 
m 2 v 1  + V Z ) ( Y +  l)-Vz(P(4+P(lNI 

2C2V,+VZ(l -P(l))l 
U(.q = 

where 

(3.2.4) 
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(4 
Figure 5. Illustration of (a) 4" and (b) Cz as functions of the applied velocity 0 for 

+,=3.14 (solid line), d o = t  (dotted line) and 4 , = + x  (dashed line). 

and also from equations (3.1.21) we have 

3.2.3. Discussion of results for asymmetric boundary conditions 
As the director profile is linear and pre-determined by the boundary conditions it is 

clear that no flow alignment will occur. The in-plane velocity is almost linear in Z with 
small sinusoidal fluctuations corresponding to the regular sinusoidal oscillations of the 
transverse velocity component. 
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4. Shear flow of a bookshelf sample 
The sample is arranged in vertical layers between two infinite horizontal parallel 

plates a distance 2d apart (Beresnev et al. [ S ] ) .  The lower one is at rest while the upper 
one is moved parallel to the layers with a velocity U in a straight line in its own plane. 
The alignment is described by the layer normal a which coincides with the y axis and 
the projection of the director in the shear plane c. 

Therefore the velocity and the director orientation are described by 

a = [0,1,0], c = [cos d,(z), 0, sin &z)], v = [u(z), v(z), 01, 
where d, is the angle between c and the x axis, u(z) is the velocity in the shear plane and 
v(z) is a secondary velocity component. 

The chirality of the helical phases means that the director rotates as we progress 
along the layer normal and so the system variables must be dependent on the lateral 
variable y.  In this case the conflict between the twisted structure and the planar 
boundaries leads to the formation of line disinclinations [12] .  The dynamics of such a 
system, however, are beyond the scope of the present study and so are not discussed 
here. 

4.1. ShearJlow of smectic C 
4.1.1. The elastic energy function 

layers parallel or perpendicular to it and so 
The elastic deformations are only due to the rotation of the c director by moving the 

W=&K;+KK',)(a-V x c)'+$(K;+K;)(V.c)'=$ f(d,) (:ty - , 
f(d,) = ( K ;  + K;)  cos' 4 + ( K ;  + KK',) sin' 4. (4.1.2) 

Discussion of these static coefficients [9 ]  suggests that K; + K ;  and K",KK', are 
positive. 

(4.1.1) 

where 

4.1.2. The linear momentum balance 

using the Onsager relations we have 
In the absence of applied pressure gradients, external body forces and couples and 

(4.1.3) 

in the x and y directions, respectively, where the functions t i (4)  are given by 

5 1 ( # ) = & ~ o + ~ 4 + ; / 5 ) + n Z ~ ~ ~ 2 4 + ~ 3 s i n 2 4 c o s 2  4, 1 
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and so the velocity components are given by 

du 
d z - t 2 ( 4 ) 2  cos2 4-<1(4)t3(4)' 

c252(#) cos Cft - c1 t 3(#) -- 

dv -_ C l t 2 ( 4 ) C O S  4-c251(4) 
dz - t 2 ( 4 I 2  cos2 4 - 51(4)53(4)' 

where c1 and c2 are constants of integration and are the shearing forces per unit area in 
the x and y directions. 

4.1.3. The angular momentum balance 
From the angular momentum c equations we have 

or, substituting equations (4.1.1) and (4.1.5) we obtain 

where 

(4.1.6) 

(4.1.7) 

4.1.4. The viscous dissipation inequality 

terms 
The following thermodynamic constraint limits the magnitude of the dissipative 

or, employing equation (4.1.5) 

du dv 
dz dz 

c1 -+c2- 2 0 .  

(4.1.8) 

(4.1.9) 

The general expression for the viscous dissipation inequality can be manipulated to 
yield 

tl(4)>0, and t3(4)>0 for all 4. (4.1.10) 

4.1.5. The Lagrange multipliers, fii 

to depend on the lateral co-ordinate y 
Upon consideration of the angular momentum a equations we have to choose the pi 

B=yCt",,- t"yz + fix, 0, t"yX - t"x, + f l J 3  (4.1.11) 

where fl, and fl, are static contributions. This implies that these inherent stabilizing 
couples that allow the smectic to keep its initial stratified state must increase linearly 
with y. This is not entirely credible, so this seems to point to the formation of some type 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
1
:
1
0
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



Behaviour of smectics C ,  C", C ,  and C& 1921 

of periodic domain structure or possibly some even more complex behaviour. The 
nature of this solution is not especially suprising due to the initial assumption of the 
action of a secondary, velocity component v(z) across the layers. 

4.1.6. Equilibrium analysis 
To investigate whether any structurally stable shear situations exist let us consider 

the case of simple shear flow involving no transverse velocities. We allow the c-director 
to rely solely on time and take the velocity profile to be linear so 

c = [cos @(t), 0, sin @(t), (4.1.13) a = [0,1,0], v = [ k z ,  0, 01, 
where k is a positive constant. This yields the governing equation 

d4  21, -+ k ( I ,  + I ,  cos2 @) = 0 
dt 

(4.1.14) 

where I ,  is positive. It follows that the alignment of the flow depends on the relative 
magnitudes of I ,  and I , .  

If lI,l > A 5  then we get flow alignment according to 

@-+-@a orn -@a if A2>0 and  or &-n if A,<O, (4.1.15) 

where @a is the acute angle satisfying 

* S  cos (24,) = - - . 
22 

(4.1.16) 

If 1A21 < A5 then no flow alignment can occur and a non-stationary flow develops. It 
would be expected that this would bear some similarity to the 'tumbling' effect 
exhibited by some nematic materials as described by Carlsson [13]. 

4.1.7. Results for smectic C 
Unfortunately very little is known about the relative magnitudes of the nine 

independent viscosity coefficient combinations present in this problem and as there is 
no anaiytical solution, it is somewhat unreasonable to produce a numerical study at 
this stage. 

4.2. Shearflow of smectic C ,  
4.2.1. The governing equations 

Due to the additional symmetry of the smectic C, phase it is not necessary to 
introduce a secondary, velocity component into the calculation and so the remaining 
shear plane velocity is given by thekven terms of equation (4.1.5) 

du c1 

dz - <I(@) 

and the angular momentum balance, equation (4.1.6), becomes 

Because of the loss of the cross-layer velocity component it is now 

p=0 

(4.2.1) 

(4.2.2) 

possible to select 

(4.2.3) 
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which implies the smectic structure is stable under an applied shear parallel to its layers. 
The long term equilibrium of the flow is similar to that for smectic C (see 44.1.6). 

5. Effects of a rotating magnetic field on smectics C and C, 
Repeating analysis first applied to nematics by Tsvetkov [4] we consider the non- 

chiral phases' reaction to being placed in a magnetic field which rotates about the layer 
normal. Therefore we choose 

(5.1) 1 a = [O,O, 11, 

v=o, 

c = [cos 4(t), sin &t), 01, 

H = H[cos (ot), sin (wt), 01, 

where H is the magnitude of the magnetic field. This selection of variables assumes that 
the Lagrange multipliers, pi, hold the layers parallel to the applied field. The a and c 
components of the magnetic body couples are given by 

1 G: = [xaa,H, + 
(5.2) 
\ ,  

G;= [x"~u,H,+ xCcpHp]Hi, 1 
where x" and xc are the magnetic susceptibilities along the a and c vectors, respectively, 
and 

xac = (x"xc)1/2 (5.3) 

Both the smectic C and C, phases are governed by the same equation 

sin 2(4 - wt), 2- XCH2 - -~ 
dt 4& 

which has the solution 

(5.4) 

where 4(0)=0 in the latter and 

fH2 
42, 

0, =- , R = J(o' - o:). 

Below some critical rotational velocity o, the c director simply rotates with the 
magnetic field with some constant phase lag dependent on 1,. Above this velocity the 
liquid crystal exhibits more complex behaviour. 

If we compare this situation with that for nematics derived by Tsvetkov for a 
director orientation described by n = [cos +(t), sin +(t), 01 

it is remarkably similar. Although smectics are much more complicated than a two 
dimensional nematic it appears that they behave like one when the magnetic field is in 
the plane of the layers. 
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6. Unwinding the chiral helix of smectics C* and CG with a magnetic field 
As a magnetic field is applied parallel to the layers of a chiral smectic liquid crystal 

the effect on the helix as the field is increased is investigated. Therefore, .assuming the 
layers remain parallel to the field, we have 

a = [0, 0,1], c = [cos $(z), sin c$(z), 01, v = 0, H = [ H ,  0, 01, (6.1) 
which yields the following governing equation for both smectics C* and C& 

d 2 4  K; ?= xCH2 sin 4 cos 4. 
dz  

This implies that the critical field at which the helix is totally unwound is given by 

where P is the pitch. 

for a director in the plane of the field, i.e. n = [cos d)(z), sin 4(z),  01 
When compared with the analysis of de Gennes [S] and Meyer [6] for cholesterics 

d 2 4  K ,  ?= xaH2 sin I$ cos 4 
dz (6.4) 

the similarity is clear. This leads us to the conclusion that in this one simple situation a 
chiral smectic phase behaves as a two-dimensional cholesteric. 

References 
[l] LESLIE, F. M., STEWART, I. W., and NAKAGAWA, M., 1991, Molec. Crystals liq. Crystals, 198, 

[2] CARLSSON, T., STEWART, I. W., and LESLIE, F. M., 1992, J. Phys. A, 25, 2371. 
[3] BRAND, H. R., and PLEINER, H., 1991, J. Phys., France, 1, 1455. 
[4] TSVETKOV, V., 1939, Acta physicochim (USSR), 10, 557. 
[S] DE GENNES, P. G., 1968, Solid St. Commun., 6, 163. 
[6] MEYER, R. B., 1968, Appl .  Phys. Lett., 12, 281. 
[7] LESLIE, F. M., STEWART, I. W., CARLSSON, T., and NAKAGAWA, M., 1991, Continuum Mech. 

[S] BERESNEV, L. A., BLINOV, L. M., OSIPOV, M. A., and PIKIN, S. A., 1988, Molec. Crystals liq. 

[9] CARLSSON, T., STEWART, I. W., and LESLIE, F. M., 1991, Liq. Crystals, 9, 661. 
:lo] MIESOWICZ, M., 1946, Nature, Lond., 158, 27. 
:11] ERICKSEN, J. L., 1969, Trans. SOC. Rheol., 13, 9. 
:12] GLOGAROVA, M., FOUSEK, J., LEJCEK, L., and PAVEL, J., 1984, Ferroelectrics, 58, 161. 
1131 CARLSSON, T., 1984, Molec. Crystals liq. Crystals, 104, 307. 

443. 

Thermodyn., 3, 237. 

Crystals A, 158, 3. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
1
:
1
0
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1


